Probability Review
SW Chapter 2.1-2.4

EC200: Econometrics and Applications
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Learning objectives

» Understand and use key vocabulary

» Calculate expected values and variances and apply their properties
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Probability Review (Chapter 2.1-2.4)

Random variables
m Discrete distributions
m Continuous distribution functions

Features of probability distributions
Joint probability distributions

Normal distribution
m Finding normal probabilities
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Random variables
@00

Key definitions: random variables

» Random variable: discrete and continuous
> Probability density function

» Cumulative density function

» Joint distribution
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Random variables

Random variable Definition

Represents a possible numerical value from a random experiment:

» Discrete random variable: Takes on no more than a countable number of
values.

» Continuous random variable: Can take on any value in an interval - possible
values measured on a continuum.
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Random variables
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Discrete vs. continuous random variables

Continuous

> Weight of packages filled by
mechanical process

Discrete

» Roll a die twice, X is number of

times 4 comes up (X €0,1,2).

. . ) » Temperature of cleaning solution
» Toss a coin five times, X is the

number of heads (X € 0,1,2,3,4,5). > Time.between failures of an
electrical component
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Discrete distributions

Probability density function

Let X be a discrete random variable and x be one of the possible values.
» The probability that X takes value x is written as P(X = z) = P(z).

Probability density function Definition

Representation of the probabilities for all possible outcomes.
» 0 < P(z) <1 for any value of =

> ¥, Pla) =1
Note that in the discrete case, sometimes called probability distribution function
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Discrete distributions

Probability distribution function: example

Example 1

Consider the following random experiment:
» Toss 3 coins.
» Define X as the number of heads.

» What is the probability distribution function of X? That is, show P(z) for all
values of z.
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Random variables
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Discrete distributions

Probability density function: example

1

0.9

0.8

x P(x) Y

x 0.6

0 P(0) =1/8=0.125 £ os
1 P(1) = 3/8 =0.375
2 P(2) = 3/8 = 0.375
3 P(3) =1/8 =0.125

0 1 2 3
X = # heads
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Random variables
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Continuous distribution functions

Continuous random variables

» A continuous random variable has an uncountable number of values.

» Because there are infinite possible values, the probability of each individual
value is infinitesimally small.

» If X is a continuous random variable, then P(X = z) = 0 for any individual
value .

» Only meaningful to talk about ranges.
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Continuous distribution functions

Probability density functions (PDF)

> Let X be a continuous random variable
» Its probability density function (PDF), f(z) is a function that lets us compute
the probability that X falls within some range of potential values.

» We define f(z) such that the probability that X falls within any interval of
values is equal to the area under the curve of f(x) over that interval.
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Random variables
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Continuous distribution functions

Probability density function properties

Properties of the probability density function (PDF), f(z), of random variable X:

f(z) > 0 for all values of .
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Continuous distribution functions

Probability density function properties

Properties of the probability density function (PDF), f(z), of random variable X:

The area under f(x) over all values
of the random variable X within its
range equals 1.

/X F@)de = 1
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Continuous distribution functions

Probability density function properties

Properties of the probability density function (PDF), f(z), of random variable X:

The probability that X lies between
two values is the area under the
density function graph between the
two values:

P(a<X<b)=/bf(ac)dx
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fole] To)
Continuous distribution functions

Cumuls
Definition

F(z,): The area under the probability
density function f(z) from the minimum
x value up to xg:

F(z,) = /I :0 F(@)dz iox,

In some cases, Ty = —O00.
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Continuous distribution functions

Relationship between PDF & CDF




Prob. distributions
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Key definitions: features of probability distributions

> Measures of central tendency: expected value
> Measures of variability: variance and standard deviation

Note: We refer to E[Y] as the first moment of Y, E[Y?] as the second
moment, F[Y?3] as the third moment, etc.
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Expected value discrete random variables

» The expected value of discrete random variable X:
EX]=p= ZxP(x)

» Long-run average value of the random variable X over many repeated trials

> Weighted average of possible outcomes, where weights are the probabilities of
that outcome

» Also called the mean or expectation of X
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Expected value of discrete random variables

Example 2

Recall an experiment in which we flip a coin 3 times. Let X be the number of

heads.

X] o 1 2 3
P(x)[0.125 0.375 0.375 0.125

What is the expected value of X?
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Variance/standard deviation

Variance of discrete random variable X Definition

o® = E[(X — w)?’ =) (z - p)*Pz)

or
02 = E[(X — p)? Zx2P

Standard deviation of discrete random variable X Definition
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Prob. distributions
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Linear functions of random variables

Let W = a + bX, where X has mean px and variance ag(, and a and b are
constants:

» The mean of W is:
uw = Ela +bX] =a+bux

» the variance of W is:
oty = Var[o +bX] = b’o%

» the standard deviation of W is:

ow = |blox
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Joint probability distributions

What about when we have two (or more) random variables?

Joint probability distribution Definition

Express the probability that X = 2 and Y = y simultaneously:
P(z,y)=P(X =zNnY =y)
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Independence

Independence of X and Y Definition

X and Y independent <= P(x,y) = P(z)P(y)

That is, joint probability distribution is the product of their marginal probability
functions for all possible values. This can be extended to k random variables
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Conditional probability distributions

Conditional probability ribution Definition

The conditional probability distribution of random variable Y expresses
probability that Y = y conditional on X = z:

Plule) = T
Similarly,
Plaly) = “r-?
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Conditional probability distributions: example

Example 3

The probability that the air conditioning breaks at an old factory depends on
whether it is a hot day or a cold day.

» X =1 if air conditioning breaks, 0 otherwise

> Y =1 if it is a hot day, 0 otherwise

» Suppose P(0,0) = 0.4, P(0,1) =0.2, P(1,0) =0.1, P(1,1) =0.3

» What is the conditional marginal probability distribution of X if it is a hot day?
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Conditional probability distributions: example

Cool day (Y =0)

Hot day (Y =1)

AC works (X

0)

0.4

0.2

AC breaks (X

1

)

0.1

0.3
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Conditional expectation and variance

Conditional expectation and variance Definition

We use conditional distributions to calculate the conditional expectation and
conditional variance:

E[Y|X =a] = i, yiP(Y = yilX =2)

Var[Y|X = 2] = ¥ [y — E(YIX = 2)PP(Y = yi| X = 2)
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Joint distributions
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Covariance

> Let X and Y be discrete random variables with means pux and py

» The covariance between X and Y is the expected value of the product of their
mean deviations

Cov(X,Y) = E[(X — o) (Y — py)]
=D (@ = pa)(y — ) Pla,y)
x Yy
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Joint distributions
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Covariance and independence

» The covariance measures the direction of the linear relationship between two
variables (sometimes called “linear dependence”).

» If two random variables X and Y are statistically independent,
= Cov(X,Y) =0.

» The converse is not necessarily true. Cov(X,Y) = 0 % statistical
independence.
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Correlation

We can standardize the covariance between X and Y by dividing by their standard
deviations to get the correlation between X and Y.

Cov(X,Y)

p=Corr(X,Y) = pe—

p is “unitless,” —1 < p <1
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General rules: Linear sums and differences

Handy relationships to remember:

ElaX +bY] = a,uX + buy
Var(aX +bY) = a’0% + b’0% + 2abCov(X,Y)
Var(aX —bY) = a®c% + b20y —2abCov(X,Y)
Cov(aX +b,cY +d) = acCov(X,Y)

CH2: Probability Review



Normal Dist.
00000000

Normal distribution

\4

Location determined by the mean, u. 1(0)

v

Spread determined by standard
deviation, o.

v

Bell-shaped & symmetrical

» Mean = median = mode

» Infinite range, —oco < z < 00
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Normal distribution

» Distribution of sample means approach normal distribution with “large”
sample size (Central Limit Theorem)

» Easy to compute probabilities!
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A family of distributions

> Each distribution characterized entirely by u and o.
» We write the following for each distribution:

X ~ N(u,0%)
£(x)
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Normal PDF

Normal probability density function:

F@) = e @w?/2?

V2702

This is difficult to work with directly! We will use probability tables.
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Normal CDF

For X ~ N(u,o?), the cumulative distribution function is:

F(zo) = P(X < x0)
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Finding normal probabilities
The probability for a range of values is measured by the area under the curve:

Pla< X <b)=F(b)— F(a)

CH2: Probability Review



Normal Dist.
000000800

Finding normal probabilities

F(b) = P(X < b)

F(a) = P(X < a)
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Finding normal probabilities
The probability for a range of values is measured by the area under the curve:

P(a < X <b) = F(b)— F(a)
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Finding normal probabilities

Things to note:
> P(X < :L‘()) ZP(X < :L’())

» P(X <xzp)=1—P(X >x0) =
P(X>x0):1—P(X<x0)
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Finding normal probabilities

Finding normal probabilities

Things to note:
» P(X < —a)=P(X >a).

OQO—f—--——————— )=
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Finding normal probabilities

Recap: Linear functions of random variables

Special case: standardized random variable.

ox

Z

which has piz = 0 and 0% = 1
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Finding normal probabilities

The standard normal distribution

> Any normal distribution can be transformed into the standardized normal
distribution (Z ~ N(0,1)):

f(z)

p=0 z

» We transform X units into Z units by subtracting the mean of X and dividing
by its standard deviation:

_ X —px

B

Z
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Finding normal probabilities

Example: normal probabilities

Example 4

If X ~ (100,50%), what is the Z-value for X = 2007
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Finding normal probabilities

Comparing X and Z units

f(x) f(z)

v X RS p=0 z
Note that the distribution is the same, only the scale has changed.
We can express the problem in original units (X) or standardized units (Z)
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Finding normal probabilities

Finding normal probabilities

f(x)
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Finding normal probabilities

Standard normal distribution table

» The standard normal distribution table (available on Blackboard) shows
values of the cumulative normal distribution function.

» For a given Z-value a, the table shows F'(a)
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Finding normal probabilities

Standard normal distribution table

APPENDIX TABLES

Table 1 Cumulative Distribution Function, F(z), of the Standard Normal Distribution Table

A2

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
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Finding normal probabilities

Finding normal probabilities

P(Z < 2.00) = 0.9772
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Finding normal probabilities

Finding normal probabilities

For negative Z-values, recall that the distribution is symmetric:
P(Z<—-a)=1-P(Z<a)

9772

9772

.0228 0228
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Finding normal probabilities

Type A: find probabilities, given X ~ N(a,b)

Example: A cupcake factory’s daily production of cupcakes is normally distributed, with an average
of 5,100 cupcakes per day and a standard deviation of 1,200 cupcakes. What is the probability that

the factory produces more than 6,000 cupcakes tomorrow?
Draw normal curve for the problem in terms of X
Translate X-values to Z-values
Break into pieces of the form F(Z < z)

Use the cumulative normal table
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Finding normal probabilities

Type B: find X-value, given probabilities

Ezample: A cupcake factory’s daily production of cupcakes is normally distributed, with an average
of 5,100 cupcakes per day and a standard deviation of 1,200 cupcakes. There is a 10% chance that

the factory produces fewer than how many cupcakes tomorrow?
Find the Z-value for the known probability

Convert to X units using the formula:

X=p+2Zo
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Finding normal probabilities

General rounding guidelines

Common z-values:

F(z) 090 0.95 0975  0.99
2 1282 1645  1.960  2.326
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